首页> 外文OA文献 >Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system
【2h】

Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system

机译:使用全身动态惯性运动捕捉系统估算躯干弯曲过程中的3D L5 / S1力矩和地面反作用力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10 Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20 N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load.
机译:惯性运动捕获(IMC)系统已经变得越来越流行用于动态运动分析。但是,很少有研究尝试使用这些测量技术来估算动力学变量,例如关节力矩和地面反作用力(GRF)。因此,我们调查了由9名男性参与者执行的全身动态IMC系统在估计对称,不对称和快速躯干弯曲过程中的3D L5 / S1力矩和GRF时的性能。使用动态IMC系统(Xsens / MVN),使用自上而下的逆动力学分析,根据上身段运动学估算L5 / S1力矩,并根据全身段加速度估算GRF。作为参考,使用了实验室测量系统:用奇石乐测力板(FPs)测量GRF,并使用基于FP数据的自下而上逆动力学模型和通过光学装置测量的下半身运动学来计算L5 / S1力矩。运动捕捉系统(OMC)。通过计算力矩/力时间序列的均方根误差(RMSerrors)和绝对峰值力矩/力的类间相关性(ICC),可以量化OMC + FP和IMC系统之间的对应关系。对受试者平均,L5 / S1力矩RMS误差保持在10 Nm以下(约为峰值延伸力矩的5%),而3D GRF RMS误差仍在20 N以下(约为峰值垂直力的2%)。 L5 / S1峰值延伸力矩(0.971)和垂直GRF(0.998)的ICC较高。由于幅度较低,发现峰值不对称L5 / S1矩(0.690-0.781)和水平GRF(0.559-0.948)的ICC较小。总之,在基于IMC的动态评估和基于实验室的反负荷估算之间发现了密切的对应关系。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号